企業觀察網區域大數據服務中心

俄羅斯科研人員使用機器深度學習重建纖維3D圖像

來源:  科技日報       作者:董映璧      發布時間:2021-8-27 17:04  |  

俄羅斯科爾科沃科學技術研究所科研人員借助微型計算機斷層掃描技術成功重建了纖維材料3D圖像。為了解決這一復雜和耗時的任務,科研人員使用了機器深度學習方法。相關研究結果近日發表在《計算材料科學》雜志上。

研究三維顯微纖維強化復合材料和其他復雜的材料,微型計算機斷層掃描是一個不可缺少的工具。然而,使用這種方法會遇到一些額外的難題,例如樣本尺寸太小和圖像上的陰影區域,以及低質量甚至完全沒有單獨的圖像片段等。為了解決這些難題,科研人員決定使用廣泛用于數字圖像處理中的缺陷檢測方法。

科研人員拉德米爾·卡拉莫夫解釋道,基于人工智能重建圖像最大優勢是速度。一個良好的訓練模式可以每秒處理數以百計的圖像。這樣的速度是單個人無法完成的。此外,計算機能更好地處理三維立體圖像,因為它能夠“看見”它們,并能在瞬間全方位重建圖像。

卡拉莫夫表示,在復合材料中加入纖維可在三個方向獲得任意取向,因此,必須處理復雜的內部微觀結構的3D圖像。而借助神經網絡技術不可能達到要求的精度。為此,研究人員提出了以生成對抗網絡與3D編碼器和解碼器構成的微型計算機斷層掃描方法重建三維圖像。他稱,當利用生成對抗網絡重建圖像時,有兩個相互競爭的神經網絡:一個是生成人工圖像的生成網絡,一個是歧視網絡。它們就像一個造假者和警官,前者尋求打印更多可以以假亂真的貨幣,而后者負責檢驗每一個貨幣的真假。

據悉,研究人員利用沒有任何重復其結構的復合增強短玻璃纖維作為樣品,測試了3種不同的生成對抗網絡結構。結果發現,微型計算機斷層掃描技術可以重建所有缺陷的圖像,這對未來深入研究和分析復雜材料的性能具有重要意義。

(編輯:于思洋

今日看點
視覺 / 視頻更多
習近平出席二十國集團領導人第十六次峰會
李克強出席第16屆東亞峰會
郝鵬赴湖北實地調研督導中國有色集團
云南宣楊高速通車
三峽水庫連續12年實現175米滿蓄目標
北京市冬奧場館和配套基礎設施建設全面收官
融媒體更多

國資央企將黨建落到實處 統一于公司治理

物流國家隊浮出水面,不跟順豐們搶生意

彭華崗:國資央企在四個重要方面發生了深刻變化

時評更多
茄子视频懂你更多app最新版-茄子视频懂你更多qz8app懂你更多